
Notes on Windows Error Reporting 0xdabbad00

Notes on Windows Error Reporting
@0xdabbad00 (Dabbadoo)

0xdabbad00.com
2014-01-08

Introduction 2
Key Points . 2
About me . 2

Digging deep 2
What is Windows Error Reporting? 3
Sample Crash Report 3

Event logs . 4
Sample Crash Upload 4

Stage One . 5
Stage Two . 5
Stage Three . 5
Stage Four . 6
Stage Five? . 6

CEIP 6
Dangers of Error Reporting 7

Passive only . 7
If you could MiTM SSL . 7

Disabling WER 7
Disabling WER for home users . 8
Disabling WER via GPO . 8

Conclusion 8
Recommendations to Microsoft . 8
Recommendations to Software Companies . 8
Recommendations to Windows Users and Admins . 8

Appendix 9
windbg output from calc.exe crash . 9
Event Logs . 10
Testing on your own . 11
Data sent in the .cab . 12

Page 1 of 14

https://twitter.com/0xdabbad00
0xdabbad00.com

Notes on Windows Error Reporting 0xdabbad00

Introduction
Recent news1 discussed the use of data leaked through Windows Error Reporting (WER). These notes
attempt to better explain what is and is not possible and to generalize the attack classes for all error reporting.
It’s important to note where these problems apply to any error reporting (not just Microsoft’s WER) and
where any entity (not just the US gov) could leverage this knowledge.

Key Points
1. Only the initial beacon for WER is unencrypted. All follow-on communication, including any crash

dump is sent encrypted over HTTPS.
2. The initial, unencrypted beacon, does not provide any memory offsets, and can not be used as an ASLR

bypass/infoleak.
3. The US Configuration Baseline for Windows2, provided by NIST, has always recommended that

Windows Error Reporting be disabled and documents how to do so.

About me
I have been developing a product for Parsons3 for the past few months that leverages Microsoft’s built in
error reporting, namely it’s Corporate Error Reporting, which enterprises can use to collect and view the
errors occurring on their networks instead of these reports being sent to Microsoft. My product analyzes the
crash dumps it collects to identify exploit attempts against the systems on the network. Check out our booth
at ShmooCon and ask about the product called “Cran: Crash Analyzer”.</Advertising>

Through this work, I have a decent understanding of WER.

Digging deep
If you want to do something cool in infosec for Windows, but aren’t sure where to start, I recommend picking
a random document off Microsoft’s Technical Documents4 page, reading it thoroughly and coming up with
cool ideas on how to use it. Examples:

• Responder5 from SpiderLabs uses knowledge from [MS-LLMNRP]: Link Local Multicast Name Resolu-
tion (LLMNR) Profile6

• Stuxnet’s .LNK exploit (CVE-2010-25687) could be discovered through a close read of [MS-SHLLINK]:
Shell Link (.LNK) Binary File Format8

Dave Aitel explained this concept in his post The Squeeze9 where he states:

So in general my feeling on 0days is that they come from new attack surfaces. Finding those new
attack surfaces takes a lot of initial time [...] At some point the team crosses a threshold and
then the cracks start forming and [...] you’re basically drowning in 0day at that point, and it’s
just a matter of picking up the pieces you want to use to construct your exploit.

1http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-2.
html

2usgcb.nist.gov/usgcb/documentation/USGCB-Windows-Settings.xls
3http://www.parsons.com/
4http://msdn.microsoft.com/en-us/library/jj712081.aspx
5https://github.com/SpiderLabs/Responder
6http://msdn.microsoft.com/en-us/library/dd240328.aspx
7http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
8http://msdn.microsoft.com/en-us/library/dd871305.aspx
9https://lists.immunityinc.com/pipermail/dailydave/2013-October/000504.html

Page 2 of 14

http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-2.html
usgcb.nist.gov/usgcb/documentation/USGCB-Windows-Settings.xls
http://www.parsons.com/
http://msdn.microsoft.com/en-us/library/jj712081.aspx
https://github.com/SpiderLabs/Responder
http://msdn.microsoft.com/en-us/library/dd240328.aspx
http://msdn.microsoft.com/en-us/library/dd240328.aspx
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
http://msdn.microsoft.com/en-us/library/dd871305.aspx
http://msdn.microsoft.com/en-us/library/dd871305.aspx
https://lists.immunityinc.com/pipermail/dailydave/2013-October/000504.html
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-2.html
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-2.html
usgcb.nist.gov/usgcb/documentation/USGCB-Windows-Settings.xls
http://www.parsons.com/
http://msdn.microsoft.com/en-us/library/jj712081.aspx
https://github.com/SpiderLabs/Responder
http://msdn.microsoft.com/en-us/library/dd240328.aspx
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
http://msdn.microsoft.com/en-us/library/dd871305.aspx
https://lists.immunityinc.com/pipermail/dailydave/2013-October/000504.html

Notes on Windows Error Reporting 0xdabbad00

In this case, you could have read

1. [MS-CER]: Corporate Error Reporting Version 1.0 Protocol10

2. [MS-CER2]: Corporate Error Reporting V.2 Protocol11

Corporate Error Reporting (CER, instead of WER) just means that crash dumps are sent to a local WER
server, instead of Microsoft’s, if you buy (or build) a product that can receive those. It does work slightly
differently and some aspects are OS dependent.

What is Windows Error Reporting?
Windows Error Reporting was introduced in Windows XP. When an application crashes, the user is prompted
to send their crash dump to Microsoft. Microsoft uses these reports to identify and fix bugs. This information
could help prioritize bugs (largest number of users affected) or help reproduce the bugs (crash only occurs
when a third-party toolbar has been installed).

Since those early days the WER protocol has become a catch-all for any sort of telemetry data to be sent to
Microsoft. The largest non-crash source of this data is Microsoft’s CEIP (Customer Experience Improvement
Program), which is what was informing Microsoft of USB’s being plugged in. Websense noted this USB info
leakage in their report12.

WER is the default crash handler for Windows, so most applications, such as Internet Explorer, Adobe
Reader, Skype, and anything else that hasn’t taken special care to avoid it, will have their crash reports
sent to Microsoft. Microsoft does provide access (for a price) to vendors that wish to see the crash reports
for their applications. Some applications do not use WER. Notably, Google Chrome, Mozilla Firefox, and
OpenOffice have their own crash reporting.

The protocol is a conversation, that starts with the client (your computer) sending an HTTP (unencrypted)
message to the server. This is done through werfault.exe, not the crashed application, because the crashed
application is not trust-worthy because it has crashed. If the server is interested, it asks for more info, and
the rest of the conversation continues over HTTPS (encrypted). Throughout this conversation you should be
asked to consent to sending differnt information.

Nothing is sent ever for this crash if you don’t click “Check online for a solution and close the program”. If
you did consent and Microsoft wanted more info, you’d get another message asking for consent again to the
next set of info to send.

This is the process in theory, but some systems end up having default consent.

Sample Crash Report
Let’s see a quick example of these crash reports. Let’s crash calc.exe and see what happens. This trick
works on Windows 7 and 8. Bring up Fiddler or Wireshark to watch your network traffic (Fiddler is preferred
so we can watch the HTTPS traffic later). Follow the instructions13 from Kris Kaspersky on crashing calc by
switching to scientific mode in calc.exe, typing “1/255”, enter, and click the “F-E” button.

Consent to any WER pop-up, and you should then see an HTTP request to http://watson.microsoft.com.
Mine looks like:

10http://msdn.microsoft.com/en-us/library/cc224574.aspx
11http://msdn.microsoft.com/en-us/library/dd942170.aspx
12http://community.websense.com/blogs/securitylabs/archive/2013/12/29/dr-watson.aspx
13http://nezumi-lab.org/blog/?p=239

Page 3 of 14

http://msdn.microsoft.com/en-us/library/cc224574.aspx
http://msdn.microsoft.com/en-us/library/dd942170.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/12/29/dr-watson.aspx
http://nezumi-lab.org/blog/?p=239
http://msdn.microsoft.com/en-us/library/cc224574.aspx
http://msdn.microsoft.com/en-us/library/dd942170.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/12/29/dr-watson.aspx
http://nezumi-lab.org/blog/?p=239

Notes on Windows Error Reporting 0xdabbad00

GET http://watson.microsoft.com/StageOne/calc_exe/6_1_7601_17514/4ce7979d/
ntdll_dll/6_1_7601_18247/521ea91c/c00000fd/00052c26.htm
?LCID=1033&OS=6.1.7601.2.00010100.1.0.1.17514&SM=innotek%20GmbH&SPN=VirtualBox
&BV=VirtualBox&MID=EADE9A2C-C206-40B9-9986-13D4B1449226

In order to break this down, you can run calc.exe from windbg and then run !analyze -v on the crash.
This output is included in the Appendix. This analysis shows the following line:

WATSON_STAGEONE_URL: http://watson.microsoft.com/StageOne/calc_exe/6_1_7601_17514/4ce7979d/
ntdll_dll/6_1_7601_18247/521ea91c/c00000fd/00089ecf.htm?Retriage=1

This matches the URL that was contacted, except the final “file” (00089ecf). This can be broken down as
follows:

• GET request made to http://watson.microsoft.com/StageOne/
• calc_exe is the name of the process (all strings are scrubbed).
• 6_1_7601_17514 Version as identified in the PE resources of the process file (calc.exe).
• 4ce7979d Link time stamp from the PE header. Note that the Websense report misidentified this as a

“Crash location”. This correction is important as a leak of a memory address would be bad for ASLR.
• ntdll_dll/6_1_7601_18247/521ea91c Same info for module believed to be responsible
• c00000fd Exception code, in this case “Stack overflow”.
• 00052c26 Exception offset. In this crash, EIP is at 77f49ecf (ntdll!RtlpCreateSplitBlock+0x4f2),

and the base of ntdll was 77ec0000, which means that 77f49ecf - 77ec0000 = 00052c26.
• LCID=1033&OS=6.1.7601.2.00010100.1.0.1.17514 My language setting and OS.
• &SM=innotek%20GmbH&SPN=VirtualBox&BV=VirtualBox&: The system manufacturer, system

product name, and bios version for my system, as found in the values in
HKLM\SYSTEM\ControlSet001\Control\SystemInformation.

• MID=EADE9A2C-C206-40B9-9986-13D4B1449226 MachineID as found in
HKLM\Software\Microsoft\Windows\Windows Error Reporting\MachineID. This value does not ex-
ist anywhere else in the registry, and as best as I can tell is an ID that is only used by Windows Error
Reporting, so Microsoft knows crashes are coming from the same computer, but can’t associate this
with anything else.

The response is:

Bucket=-406313712
BucketTable=1
Response=1

A negative bucket number is the server’s way of saying “Go away, I don’t care.”

Event logs
Much of this same information can be seen in the Windows Event Log. My two event logs are shown in the
Appendix.

Sample Crash Upload
Let’s see an example of what happens when Microsoft does care about a crash. Oddly, at one point in my
testing, Microsoft suddenly became interested in my calc crash on a Windows 7 x64 system and the following
conversation ensued:

Page 4 of 14

Notes on Windows Error Reporting 0xdabbad00

Stage One
Unencrypted GET. The wer client uses the User-Agent “MSDW”.

GET http://watson.microsoft.com/StageOne/calc_exe/6_1_7600_16385/4a5bc9d4/ntdll_dll/
6_1_7601_18247/521eaf24/c000041d/0000000000054f01.htm?LCID=1033&OS=
6.1.7601.2.00010100.1.0.48.17514&SM=innotek%20GmbH&SPN=VirtualBox&BV=VirtualBox

Response

HTTP/1.1 404 Not Found
Cache-Control: private
Content-Type: text/html
Server: Microsoft-IIS/8.0
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET

404 response html followed. Previously the client received a 200 with “Bucket=-406313712” which meant it
should stop, but because we received a 404 this time, the client seems to have broken logic that makes it
think the server must be interested in more information.

Stage Two
Encrypted GET.

GET https://watson.microsoft.com/dw/stagetwo64.asp?
szAppName=calc.exe&szAppVer=6.1.7600.16385&szAppStamp=4a5bc9d4&szModName=ntdll.dll&szModVer=
6.1.7601.18247&szModStamp=521eaf24&ExceptionCode=c000041d&offset=0000000000054f01&LCID=1033&
OS=6.1.7601.2.00010100.1.0.48.17514&SM=innotek%20GmbH&SPN=VirtualBox&BV=VirtualBox

Response

iData=1
DumpFile=/Upload/iCab/1fc1d68925e84665a94470d7ef4891a9-caed5b4c81fa8c999d50011c597f5921-4-
134701747-AppCrash64-6-1-7601-2.cab
DumpServer=watson.microsoft.com
ResponseServer=watson.microsoft.com
ResponseURL=/dw/StageFour64.asp?iBucket=134701747&szCab=1fc1d68925e84665a94470d7ef4891a9.cab
&EventType=AppCrash64&BucketHash=caed5b4c81fa8c999d50011c597f5921
Bucket=134701747
BucketTable=4
Response=1

Stage Three
Encrypted upload of the .cab file.

PUT https://watson.microsoft.com/Upload/iCab/1fc1d68925e84665a94470d7ef4891a9-
caed5b4c81fa8c999d50011c597f5921-4-134701747-AppCrash64-6-1-7601-2.cab

The .cab file can be extracted with 7-zip and in my case, contained 3 files:

Page 5 of 14

Notes on Windows Error Reporting 0xdabbad00

1. AppCompat.txt Information about some of the PE files (See the Appendix).
2. WERInternalMetadata.xml Mostly the same data in the StageOne GET request, but formatted better.
3. minidump.mdmp A minidump for the process. These contain some data from the stack, information

about the loaded modules, register data for each thread, and a bit of the memory relevant to the
instruction pointers for the threads.

The cab file is created before the StageOne GET is even sent.

Response
Responds with a 200

Stage Four

GET https://watson.microsoft.com/dw/StageFour64.asp?iBucket=134701747&szCab=
1fc1d68925e84665a94470d7ef4891a9.cab&EventType=AppCrash64&BucketHash
=caed5b4c81fa8c999d50011c597f5921

Response

iCab=-164892517

Stage Five?
There is a stage 5 possible, as evidenced by the undocumented registry setting possible called “DoNotUseS-
tage5”. Stage 5 I believe should allow for additional data to be requested from the system.

CEIP
The Customer Experience Improvement Program (CEIP) is responsible for a range of telemetry data, such as
information about USB’s being plugged in, applications being installed, windows updates failing, and many
other events. This telemetry data is passed back to Microsoft through the same error reporting channel.

You can get a feel for what CEIP does by looking at the tasks in the Task Scheduler by running “taskschd.msc”.
Expand the trees for

• “Task Scheduler Library”
• “Microsoft”
• “Windows”

The tasks for “Application Experience” and “Customer Experience Improvement Program” are relevant to
CEIP. I haven’t fully understood what all of these do.

If you’ve never seen the task scheduler before, it’s a treasure trove of weird tasks your system runs at odd
times, and is probably one of the reasons why suddenly your system’s disk start spinning late at night: Either
the defrag task kicked off or you’ve got BadBios.

Page 6 of 14

Notes on Windows Error Reporting 0xdabbad00

Dangers of Error Reporting
Passive only
As described in the news story, it seems that traffic bound for watson.microsoft.com was just passively
watched. This allows you to identify the applications in use on the network and version numbers for possible
later exploitation. The other big issue is all the other non-crash data that gets sent to the WER server via
CEIP.

If you could MiTM SSL
As we’ve seen with the various CA issues that Google has exposed, groups have been able to MiTM SSL traffic,
and if done intelligently, so you didn’t MiTM google.com, you could probably get away with doing MiTM on
watson.microsoft.com. Being able to sniff MiTM is a very difficult requirement though, and honestly if you
can do it, then there are smarter things you could do, but let’s explore some ideas here as perhaps there is
some flaw in WER that I have not uncovered.

The Alley Oop
One of the big difficulties with exploiting software nowadays is ASLR. If you’re trying to exploit something
that doesn’t have a Turing complete language in it, like JavaScript, you’re going to have problems due to
ASLR. So what you could do is:

1. Throw an exploit, or just a bug, at a process to crash it.
2. Cause the client to send a crash dump
3. Analyze the crash dump to determine the memory offsets you care about and modify your exploit to

use those.
4. Throw your modified exploit at the victim with the known memory offsets.

A common confusion about ASLR is that some of the “randomized” items, are only randomized on reboots.
So the same process started twice will have system DLL’s at the same locations, even if they “ASLR-enabled”
(dynamic based).

Greedy debugging
Corporate Error Reporting is capable of much more than simply retrieving a minidump, and I assume WER
must work the same. These additional capabilities are:

• You can retrieve a full crash dump (all the memory for that process) instead of just a minidump. This
would allow you to see passwords, and potentially browser history, emails, or whatever other data exists
in memory at the time of the crash.

• You can retrieve arbitrary files and registry keys. According to the CER 2.0 spec, you can pull back any
file or registry key. However, if you’re Microsoft, or have enough control over the network, including
being able to MiTM SSL, to act as Microsoft, you could just send down an arbitrary Windows Update
to install your malware to collect arbitrary files.

• You can run arbitrary WQL queries. This lets you retrieve other data about the system. As an example,
check out this page14.

Disabling WER
The United States Government Configuration Baseline (USGCB)15 has always recommended disabling WER.
This is seen in CCE-10441-416 with the reason “To lower the risk of a user unknowingly exposing sensitive

14http://www.codeproject.com/Articles/46390/WMI-Query-Language-by-Example
15http://usgcb.nist.gov/
16usgcb.nist.gov/usgcb/documentation/USGCB-Windows-Settings.xls

Page 7 of 14

http://www.codeproject.com/Articles/46390/WMI-Query-Language-by-Example
http://usgcb.nist.gov/
usgcb.nist.gov/usgcb/documentation/USGCB-Windows-Settings.xls
http://www.codeproject.com/Articles/46390/WMI-Query-Language-by-Example
http://usgcb.nist.gov/
usgcb.nist.gov/usgcb/documentation/USGCB-Windows-Settings.xls

Notes on Windows Error Reporting 0xdabbad00

data.” If you admin Windows systems, you should be following these guidelines.

Disabling WER for home users
Add a DWORD registry value called “Disabled” with a value of “1” to

HKLM\SOFTWARE\Microsoft\Windows\Windows Error Reporting\Disabled

Disabling WER via GPO
Create a new Group Policy Object (GPO) and expand the following branches:

1. Policies
2. Administrative Templates
3. Windows Components
4. Windows Error Reporting

For Windows XP and 2003: Double-click “Configure Error Reporting”, select “Disable”.

For Vista and up: Double-click “Disable Windows Error Reporting”, select “Enable”.

Conclusion
Recommendations to Microsoft
Microsoft did a good job of ensuring the most valuable data is sent encrypted. They also provide a large
assortment of configurable options, many of which are built into Group Policy for easy network configuration.

The two biggest problems with WER are:

• The first message is sent unencrypted.
• Data that wasn’t relevant to error reporting was show-horned into Windows Error Reporting.

Windows Error Reporting should be modified so that all beacons are sent encrypted.

Recommendations to Software Developers
Any telemetry data, including error reporting, should be sent encrypted. Ideally, all network communications
should be encrypted. Be cautious what capabilities you build into error reporting that could potentially
be abused. The more dangerous capabilities of Windows Error Reporting were protected via encrypted
communication.

Recommendations to Windows Users and Admins
Disable Windows Error Reporting until a more secure communication is built. Follow the the United States
Government Configuration Baseline (USGCB) for locking down your systems.

Page 8 of 14

Notes on Windows Error Reporting 0xdabbad00

Appendix
windbg output from calc.exe crash

Output from windbg when !analyze -v is run on a crash of calc.exe.

0:000> !analyze -v

* Exception Analysis *

Failed calling InternetOpenUrl, GLE=12029

FAULTING_IP:
calc!putnum+1a7
010070e3 e993e8ffff jmp calc!putnum+0x32e (0100597b)

EXCEPTION_RECORD: ffffffff -- (.exr 0xffffffffffffffff)
ExceptionAddress: 77f49ecf (ntdll!RtlpCreateSplitBlock+0x000004f2)

ExceptionCode: c00000fd (Stack overflow)
ExceptionFlags: 00000000

NumberParameters: 2
Parameter[0]: 00000001
Parameter[1]: 00032ffc

FAULTING_THREAD: 00001764
DEFAULT_BUCKET_ID: STACK_OVERFLOW
PROCESS_NAME: calc.exe
ERROR_CODE: (NTSTATUS) 0xc00000fd - A new guard page for the stack cannot be created.
EXCEPTION_CODE: (NTSTATUS) 0xc00000fd - A new guard page for the stack cannot be created.
EXCEPTION_PARAMETER1: 00000001
EXCEPTION_PARAMETER2: 00032ffc
RECURRING_STACK: From frames 0xb to 0xb
MOD_LIST: <ANALYSIS/>
NTGLOBALFLAG: 70
APPLICATION_VERIFIER_FLAGS: 0
PRIMARY_PROBLEM_CLASS: STACK_OVERFLOW
BUGCHECK_STR: APPLICATION_FAULT_STACK_OVERFLOW
LAST_CONTROL_TRANSFER: from 77f15d5a to 77f49ecf

STACK_TEXT:
00033028 77f15d5a 00206400 77f15d04 00000001 ntdll!RtlpCreateSplitBlock+0x4f2
00033114 77f15ae0 0000009c 000000b8 0020634a ntdll!RtlpAllocateHeap+0xb5d
00033198 77f85f63 00130000 5014016b 0000009c ntdll!RtlAllocateHeap+0x23a
000331e4 77f4a40a 00130000 5014016b 0000009c ntdll!RtlDebugAllocateHeap+0xb5
000332c8 77f15ae0 0000009c 00000000 00000000 ntdll!RtlpAllocateHeap+0xc4
0003334c 0dce7751 00130000 40140068 0000009c ntdll!RtlAllocateHeap+0x23a
00033398 0100213f 00000040 0000009c 000333d4 KERNELBASE!LocalAlloc+0x5f
000333a8 0100715c 0000009c 00033448 fffffffe calc!_createnum+0x4b
000333d4 01007112 00033418 0013bb00 0000000a calc!_divnum+0x3e
000333e8 010252a0 00033418 0013bb00 0000000a calc!divnum+0x34
0003341c 010070e3 0006e3c0 0000001f 00000001 calc!putnum+0xd4
00033450 010070e3 0006e3c0 0000001f 00000001 calc!putnum+0x1a7
00033484 010070e3 0006e3c0 0000001f 00000001 calc!putnum+0x1a7
000334b8 010070e3 0006e3c0 0000001f 00000001 calc!putnum+0x1a7
000334ec 010070e3 0006e3c0 0000001f 00000001 calc!putnum+0x1a7
...

Page 9 of 14

Notes on Windows Error Reporting 0xdabbad00

FOLLOWUP_IP:
calc!putnum+1a7
010070e3 e993e8ffff jmp calc!putnum+0x32e (0100597b)

SYMBOL_STACK_INDEX: b
SYMBOL_NAME: calc!putnum+1a7
FOLLOWUP_NAME: MachineOwner
MODULE_NAME: calc
IMAGE_NAME: calc.exe
DEBUG_FLR_IMAGE_TIMESTAMP: 4ce7979d
STACK_COMMAND: ~0s ; kb
FAILURE_BUCKET_ID: STACK_OVERFLOW_c00000fd_calc.exe!putnum
BUCKET_ID: APPLICATION_FAULT_STACK_OVERFLOW_calc!putnum+1a7
WATSON_STAGEONE_URL: http://watson.microsoft.com/StageOne/calc_exe/6_1_7601_17514/4ce7979d/
ntdll_dll/6_1_7601_18247/521ea91c/c00000fd/00089ecf.htm?Retriage=1

Followup: MachineOwner

Event Logs
After crashing calc, two event logs showed up:

Faulting application name: calc.exe, version: 6.1.7601.17514, time stamp: 0x4ce7979d
Faulting module name: ntdll.dll, version: 6.1.7601.18247, time stamp: 0x521ea91c
Exception code: 0xc00000fd
Fault offset: 0x00052c26
Faulting process id: 0x14c8
Faulting application start time: 0x01cf0c18be05df7a
Faulting application path: C:\Windows\system32\calc.exe
Faulting module path: C:\Windows\SYSTEM32\ntdll.dll
Report Id: fd9004d1-780b-11e3-a4d4-08002772e4f5

Page 10 of 14

Notes on Windows Error Reporting 0xdabbad00

Fault bucket 0, type 0
Event Name: APPCRASH
Response: Not available
Cab Id: 0

Problem signature:
P1: calc.exe
P2: 6.1.7601.17514
P3: 4ce7979d
P4: ntdll.dll
P5: 6.1.7601.18247
P6: 521ea91c
P7: c00000fd
P8: 00052c26
P9:
P10:

Attached files:
C:\Users\user\AppData\Local\Temp\WERF154.tmp.WERInternalMetadata.xml

These files may be available here:
C:\Users\user\AppData\Local\Microsoft\Windows\WER\ReportArchive
\AppCrash_calc.exe_f3f7aab2e17f591e341b7f5421d4b9a9941592_0608fd1c

Analysis symbol:
Rechecking for solution: 0
Report Id: fd9004d1-780b-11e3-a4d4-08002772e4f5
Report Status: 0

Testing on your own
Assuming you’re not lucky enough to be one of the chosen crashes, you can do some minimal testing by
spoofing the watson server to your system. These results are not very good, I apologize, but may help
someone else figure out what should happen.

Directions from the CER spec
I edit C:\windows\system32\drivers\etc\hosts and add the following line:

127.0.0.1 watson.microsoft.com

Then create a file with the following contents (this comes from the CER 2.0 document):

Response=http://oca.microsoft.com/resredir.aspx?SID=32
Bucket=500
BucketTable=5
DumpFile=1.cab

I then use cygwin to run netcat with the following:

$ cat wer.txt | nc -l 80

Page 11 of 14

Notes on Windows Error Reporting 0xdabbad00

Now crash calc again and your client will make an HTTPS connection to wer.microsoft.com. That line
with oca.microsoft.com in it is ignored, but required.

My system makes a call to

POST https://wer.microsoft.com/Responses/v1.0/32/1033.9/6.1.7601.2.00010100.1.0/16777217/
innotek%20GmbH

The contents of the POST are:

Bucket=500&BucketTable=5&Response=http://oca.microsoft.com/resredir.aspx?
SID=32&DisplayType=0&SystemManufacturer=innotek GmbH&SystemProductName=VirtualBox

The server responds with just an error message saying amongst other things “Microsoft is currently researching
the cause of this problem. Please continue to submit all Windows problem reports.” However, the user does
not see this.

Disabling HTTPS
An alternative result can be seen by creating a DWORD registry value, set to 1, named:

HKLM\Software\Microsoft\Windows\Windows Error Reporting\Debug\DoNotUseHttps

Have the initial message 404, and this will cause the client to then attempt

GET http://watson.microsoft.com/dw/stagetwo.asp?szAppName=calc.exe&szAppVer=6.1.7601.17514&
szAppStamp=4ce7979d&szModName=ntdll.dll&szModVer=6.1.7601.18247&szModStamp=521ea91c&
ExceptionCode=c00000fd&offset=00052c26&LCID=1033&OS=6.1.7601.2.00010100.1.0.1.17514&
SM=innotek%20GmbH&SPN=VirtualBox&BV=VirtualBox&MID=EADE9A2C-C206-40B9-9986-13D4B1449226

This is similar to the successful .cab upload seen earlier, but I have forced the server to use HTTP. You
could set up a fake HTTPS server and spoof things completely with the results seen earlier, but that requires
forcing your system to trust the fake certificate you create for watson.microsoft.com.

Data sent in the .cab
In addition to the .mdmp (minidump) file, there is also an AppCompat.txt and WERInternalMetadata.xml
file.

AppCompat.txt

Page 12 of 14

Notes on Windows Error Reporting 0xdabbad00

<?xml version="1.0" encoding="UTF-16"?>
<DATABASE>
<EXE NAME="SYSTEM INFO" FILTER="CMI_FILTER_SYSTEM">

<MATCHING_FILE NAME="kernel32.dll" SIZE="1161216" CHECKSUM="0xED2A37B2"
BIN_FILE_VERSION="6.1.7601.18229" BIN_PRODUCT_VERSION="6.1.7601.18229"
PRODUCT_VERSION="6.1.7601.18015" FILE_DESCRIPTION="Windows NT BASE API Client DLL"
COMPANY_NAME="Microsoft Corporation" PRODUCT_NAME="Microsoft Windows Operating System"
FILE_VERSION="6.1.7601.18015 (win7sp1_gdr.121129-1432)" ORIGINAL_FILENAME="kernel32"
INTERNAL_NAME="kernel32" LEGAL_COPYRIGHT="Microsoft Corporation. All rights reserved."
VERDATEHI="0x0" VERDATELO="0x0" VERFILEOS="0x40004" VERFILETYPE="0x2" MODULE_TYPE="WIN32"
PE_CHECKSUM="0x11EB53" LINKER_VERSION="0x60001" UPTO_BIN_FILE_VERSION="6.1.7601.18229"
UPTO_BIN_PRODUCT_VERSION="6.1.7601.18229" LINK_DATE="08/02/2013 02:16:22"
UPTO_LINK_DATE="08/02/2013 02:16:22" EXPORT_NAME="KERNEL32.dll"
VER_LANGUAGE="English (United States) [0x409]" EXE_WRAPPER="0x0"
FILE_ID="00007244ae695f8e5a730857781635acb2969f15c594"
PROGRAM_ID="0000f519feec486de87ed73cb92d3cac802400000000" />

<MATCHING_FILE NAME="ntdll.dll" SIZE="1732032" CHECKSUM="0x7EC8079C"
BIN_FILE_VERSION="6.1.7601.18247" BIN_PRODUCT_VERSION="6.1.7601.18247"
PRODUCT_VERSION="6.1.7600.16385" FILE_DESCRIPTION="NT Layer DLL"
COMPANY_NAME="Microsoft Corporation" PRODUCT_NAME="Microsoft Windows Operating System"
FILE_VERSION="6.1.7600.16385 (win7_rtm.090713-1255)" ORIGINAL_FILENAME="ntdll.dll.mui"
INTERNAL_NAME="ntdll.dll" LEGAL_COPYRIGHT="Microsoft Corporation. All rights reserved."
VERDATEHI="0x0" VERDATELO="0x0" VERFILEOS="0x40004" VERFILETYPE="0x2" MODULE_TYPE="WIN32"
PE_CHECKSUM="0x1A875F" LINKER_VERSION="0x60001" UPTO_BIN_FILE_VERSION="6.1.7601.18247"
UPTO_BIN_PRODUCT_VERSION="6.1.7601.18247" LINK_DATE="08/29/2013 02:17:08"
UPTO_LINK_DATE="08/29/2013 02:17:08" EXPORT_NAME="ntdll.dll"
VER_LANGUAGE="English (United States) [0x409]" EXE_WRAPPER="0x0"
FILE_ID="00002b1dc5de7a39b95a6c4c2da4645ca47597b16ab5"
PROGRAM_ID="0000f519feec486de87ed73cb92d3cac802400000000" />

</EXE>
</DATABASE>
<EXE NAME="ntdll.dll" FILTER="CMI_FILTER_THISFILEONLY">

<MATCHING_FILE NAME="ntdll.dll" SIZE="1732032" CHECKSUM="0x7EC8079C"
BIN_FILE_VERSION="6.1.7601.18247" BIN_PRODUCT_VERSION="6.1.7601.18247"
PRODUCT_VERSION="6.1.7600.16385" FILE_DESCRIPTION="NT Layer DLL"
COMPANY_NAME="Microsoft Corporation" PRODUCT_NAME="Microsoft Windows Operating System"
FILE_VERSION="6.1.7600.16385 (win7_rtm.090713-1255)" ORIGINAL_FILENAME="ntdll.dll.mui"
INTERNAL_NAME="ntdll.dll" LEGAL_COPYRIGHT="Microsoft Corporation. All rights reserved."
VERDATEHI="0x0" VERDATELO="0x0" VERFILEOS="0x40004" VERFILETYPE="0x2" MODULE_TYPE="WIN32"
PE_CHECKSUM="0x1A875F" LINKER_VERSION="0x60001" UPTO_BIN_FILE_VERSION="6.1.7601.18247"
UPTO_BIN_PRODUCT_VERSION="6.1.7601.18247" LINK_DATE="08/29/2013 02:17:08"
UPTO_LINK_DATE="08/29/2013 02:17:08" EXPORT_NAME="ntdll.dll"
VER_LANGUAGE="English (United States) [0x409]" EXE_WRAPPER="0x0"
FILE_ID="00002b1dc5de7a39b95a6c4c2da4645ca47597b16ab5"
PROGRAM_ID="0000f519feec486de87ed73cb92d3cac802400000000" />

</EXE>
</DATABASE>

WERInternalMetadata.xml

Page 13 of 14

Notes on Windows Error Reporting 0xdabbad00

<?xml version="1.0" encoding="UTF-16"?>
<WERReportMetadata>

<OSVersionInformation>
<WindowsNTVersion>6.1</WindowsNTVersion>
<Build>7601 Service Pack 1</Build>
<Product>(0x30): Windows 7 Professional</Product>
<Edition>Professional</Edition>
<BuildString>7601.18247.amd64fre.win7sp1_gdr.130828-1532</BuildString>
<Revision>1130</Revision>
<Flavor>Multiprocessor Free</Flavor>
<Architecture>X64</Architecture>
<LCID>1033</LCID>

</OSVersionInformation>
<ParentProcessInformation>

<ParentProcessId>1980</ParentProcessId>
<ParentProcessPath>C:\Windows\explorer.exe</ParentProcessPath>
<ParentProcessCmdLine>C:\Windows\Explorer.EXE</ParentProcessCmdLine>

</ParentProcessInformation>
<ProblemSignatures>

<EventType>APPCRASH</EventType>
<Parameter0>calc.exe</Parameter0>
<Parameter1>6.1.7600.16385</Parameter1>
<Parameter2>4a5bc9d4</Parameter2>
<Parameter3>ntdll.dll</Parameter3>
<Parameter4>6.1.7601.18247</Parameter4>
<Parameter5>521eaf24</Parameter5>
<Parameter6>c000041d</Parameter6>
<Parameter7>0000000000054f01</Parameter7>

</ProblemSignatures>
<DynamicSignatures>

<Parameter1>6.1.7601.2.1.0.256.48</Parameter1>
<Parameter2>1033</Parameter2>
<Parameter22>7867</Parameter22>
<Parameter23>78676ffd9df09faf1c4e509a092b8c6a</Parameter23>
<Parameter24>2da7</Parameter24>
<Parameter25>2da7dccfc57b53ecf85b7e1ba5cbfb6d</Parameter25>

</DynamicSignatures>
<SystemInformation>

<SystemManufacturer>=innotek GmbH</SystemManufacturer>
<SystemProductName>VirtualBox</SystemProductName>
<BIOSVersion>VirtualBox</BIOSVersion>

</SystemInformation>
</WERReportMetadata>

Page 14 of 14

	Introduction
	Key Points
	About me

	Digging deep
	What is Windows Error Reporting?
	Sample Crash Report
	Event logs

	Sample Crash Upload
	Stage One
	Stage Two
	Stage Three
	Stage Four
	Stage Five?

	CEIP
	Dangers of Error Reporting
	Passive only
	If you could MiTM SSL

	Disabling WER
	Disabling WER for home users
	Disabling WER via GPO

	Conclusion
	Recommendations to Microsoft
	Recommendations to Software Companies
	Recommendations to Windows Users and Admins

	Appendix
	windbg output from calc.exe crash
	Event Logs
	Testing on your own
	Data sent in the .cab

