
Deliver malicious
content to victim

Email
Website

(watering hole)

Malicious content
delivered to victim

IP Blacklisting, browser
site blocker

Arbitrary code
execution

Deny persistence via
system refresh

Memory corruption
vulnerability

Non-memory corruption
vulnerability

Stack based
vulnerability

Heap based
vulnerability

Linear return
address overwrite

Linear local variable
overwrite

Linear parameter
variable overwrite

Linear SEH record
overwrite

Non-linear over-
write (ex. a[n]=0)

GS SEHOP

Control of
instruction pointer

Coalesce unlink
overwrite

FreeList[] attacks
Lookaside list

attacks
Heap cache attacks

LFH FreeEntryOffset
attack

Application specific
overwrites

Use-after-free/
Double free/

Dangling pointer

Safe unlinking Vista heap hardening

Execute code from
stack

Execute code from
heap (including

heap spray)

Execute JIT’d code
(including jit spray)

Execute code from
a loaded image

DEP

ASLR

Instruction pointer
needs to point to

shellcode/ROP

Predictable
mappings/info leaks

This section of the diagram on memory corruption
vulnerabilities and mitigations has been copied from
"Exploit Mitigation Improvements in Windows 8" by
Ken Johnson and Matt Miller, presented at BlackHat
US 2012. https://media.blackhat.com/bh-us-12/
Briefings/M_Miller/
BH_US_12_Miller_Exploit_Mitigation_Slides.pdf

I made some modifications to remove lines where I
believe vulns are completely denied.

Memory corruption vulnerabilities are largely
mitigated against by the OS and compiler settings.
The application must be compiled with a recent
Visual Studio compiler to take advantage of these.
EMET can be used to enable some of these settings.

Exploit Mitigation Kill Chain
for content exploits

(those affecting browsers, pdf readers, and Office)

0xdabbad00.com

Although possibly in a
sandbox, may still be able to
read and exfill files and other
data of interest

Sandbox: Integrity levels

Sandbox: Security
application (function

hooking)

PSPs and sandboxing
applications (ex. Sandboxie).
Once kernel execution is
obtained these are bypassed,
although they may help thwart
that.

Exploit master Exploit kernel

Truly arbitrary code
execution

Virtual machine
containment

Bromium and Invincea
(and for Linux, Qubes)

Detection and incident
response

IOCs, traffic analysis

VDI (Virtual Desktop Infrastructure)
and TS (Terminal Services) in addition
to wiping the HD with a clean image
(ex. Deep Freeze).

White-listing (and AV)

Execute content in
virtualized environment
before delivery to user

FireEye and
Norman

0-day exploit Old day exploit

Keep up with patches

Exfill and persist
At this point the defender has definitely lost
but must try to stop the exfills so the attacker
will no longer have the most current info

Ex. Most
Java exploits

Continuously exploit other
systems on the network to

provide persistence or
persist beneath the level
that is being refreshed.

Use 64-bit software for
best results with ASLR

	exploit_mitigation_kill_chain.vsdx
	Page-1

