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This section of the diagram on memory corruption 
vulnerabilities and mitigations has been copied from 
"Exploit Mitigation Improvements in Windows 8" by 
Ken Johnson and Matt Miller, presented at BlackHat 
US 2012. https://media.blackhat.com/bh-us-12/
Briefings/M_Miller/
BH_US_12_Miller_Exploit_Mitigation_Slides.pdf

I made some modifications to remove lines where I 
believe vulns are completely denied.

Memory corruption vulnerabilities are largely 
mitigated against by the OS and compiler settings. 
The application must be compiled with a recent 
Visual Studio compiler to take advantage of these. 
EMET can be used to enable some of these settings.

Exploit Mitigation Kill Chain
for content exploits 

(those affecting browsers, pdf readers, and Office)
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Although possibly in a 
sandbox, may still be able to 
read and exfill files and other 
data of interest

Sandbox: Integrity levels

Sandbox: Security 
application (function 

hooking)

PSPs and sandboxing 
applications (ex. Sandboxie).  
Once kernel execution is 
obtained these are bypassed, 
although they may help thwart 
that.
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execution

Virtual machine 
containment

Bromium and Invincea 
(and for Linux, Qubes)

Detection and incident 
response

IOCs, traffic analysis

VDI (Virtual Desktop Infrastructure) 
and TS (Terminal Services) in addition 
to wiping the HD with a clean image 
(ex. Deep Freeze).

White-listing (and AV)

Execute content in 
virtualized environment 
before delivery to user

FireEye and 
Norman
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Keep up with patches

Exfill  and persist
At this point the defender has definitely lost 
but must try to stop the exfills so the attacker 
will no longer have the most current info

Ex. Most 
Java exploits

Continuously exploit other 
systems on the network to 

provide persistence or 
persist beneath the level 
that is being refreshed.

Use 64-bit software for 
best results with ASLR
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